Searching and Sorting

Part 'Two




Recap from Last Time
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Selection sort and insertion sort each
run in time O(n?) in the worst case.

Doubling the size of the
input quadruples the runtime.

Halving the size of the
input quarters the runtime.



Thinking About O(n?)

14 3 9 7 16 15 5 10 11 13 12
S~ ) -
-

T(n)
14 9 7 16 15 10 11 13 12
- -
T(%n) T(%2n)




Thinking About O(n?)

14 3 9 7 16 15 5 10 11 13 12
S~ ) -
S
T(n)

14 9 7 16 15 10 11 13 12
— —
Y4 T(n) Y4T(n)




Thinking About O(n?)

2 - YaT(n) = 2T(n)

14 3 16 2 15 5 10 11 1 13 12 4
S~ ) -
S
T(n)

2 7 9 14 15 16 4 8 10 11 12 13
— —

Y4T(n) Y4 T(n)




The Key Insight: Merge



N

The Key Insight: Merge




The Key Insight: Merge

1 4 6 8 9




The Key Insight: Merge

1 4 6 8 O
i




The Key Insight: Merge

7 1( 4 6 8 9
1




The Key Insight: Merge

7 1( 4 6 8 9
1




The Key Insight: Merge

7 1( 4 6 8 9
1




The Key Insight: Merge

7 1( 6 8 O
1




The Key Insight: Merge

7 1( 6 8 O
1




The Key Insight: Merge




The Key Insight: Merge




The Key Insight: Merge

10
||I
1 2 3 4 5 6 7 8

> ©



The Key Insight: Merge




The Key Insight: Merge




The Key Insight: Merge

Each step makes a single

comparison and reduces

the number of elements
by one.

If there are n total
elements, this algorithm
runs in time O(n).
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“Double Split Sort”
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Splitting to the Extreme

* Splitting our array in half, sorting each
halt, and merging the halves was twice
as fast as insertion sort.

* Splitting our array in quarters, sorting
each quarter, and merging the quarters
was four times as fast as insertion sort.

* Question: What happens if we never
stop splitting?
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Mergesort, Intuitively
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Mergsort

* A recursive sorting algorithm!
 Base Case:

 An empty or single-element list is already
sorted.

* Recursive step:

 Break the list in half and recursively sort
each part.

* Use merge to combine them back into a single
sorted list.



void mergesort(Vector<int>& v) {
/* Base case: 0- or 1l-element lists are
* already sorted.
*/
if (v.size() <= 1) {
return;
}

/* Split v into two subvectors. */

int half = v.size() / 2;

Vector<int> left = v.subList(0, half);
Vector<int> right = v.subList(half);

/* Recursively sort these arrays. */
mergesort(left);
mergesort(right);

/* Combine them together. */
merge(left, right, v);



How fast is mergesort?



First, the numbers.



Now, the theory!



This next section is the mathiest math
we’re going to math all quarter.

It’s great if you can follow along with it.

You aren’t expected to come up with
this on your own.

If you like this analysis, take CS161!
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void mergesort(Vector<int>& v) {
/* Base case: 0- or 1l-element lists are
* already sorted.

*/
if (v.size() <= 1) {
return;
}
/* Split v into two subvectors. */
int half = v.size() / 2; O(n)
Vector<int> left = v.subList(0, half); work

Vector<int> right = v.subList(half);

/* Recursively sort these arrays. */
mergesort(left);
mergesort(right);

/* Combine them together. */ 0O(n)
merge(left, right, v);



void mergesort(Vector<int>§ Why does forming these sublists

/* Base case: 0- or 1-el take time O(n)?
* already sorted. '
*/ . Answer at
if (v.size() <= 1) { https://pollev.com/cs106bwin23
return;
}
/* Split v into two subvectors. */
int half = v.size() / 2; O(n)
Vector<int> left = v.subList(0, half); work

Vector<int> right = v.subList(half);

/* Recursively sort these arrays. */
mergesort(left);
mergesort(right);

/* Combine them together. */ o(n)
merge(left, right, v); work


https://pollev.com/cs106bwin23

void mergesort(Vector<int>& v) {
/* Base case: 0- or 1l-element lists are
* already sorted.

*/
if (v.size() <= 1) {
return;
}
/* Split v into two subvectors. */
int half = v.size() / 2; O(n)
Vector<int> left = v.subList(0, half); work

Vector<int> right = v.subList(half);

/* Recursively sort these arrays. */
mergesort(left);
mergesort(right);

/* Combine them together. */ 0O(n)
merge(left, right, v);



voild mergesort(Vector<int>& v) {
/* Base case: 0- or 1l-element lists are
* already sorted.
*/
if (v.size() <= 1) {
return;
}

/* Split v into two subvectors. */

int half = v.size() / 2;

Vector<int> left = v.subList(0, half);
Vector<int> right = v.subList(half);

/* Recursively sort these arrays. */
mergesort(left);
mergesort(right);

/* Combine them together. */
merge(left, right, v);



How much work does
mergesort do at each level of
recursion?
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How many levels are there?
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Each recursive call cuts the
array size in hallf.
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n/ 2
elements

n/ 1

elements

n/ s
elements

After k layers of the recursion,
if the original array has size n,
each subarray has size n / 2%,
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The recursion stops when
we’'re down to a single
element.

O(n)
O(n)
O(n)
O(n)
O(n)



Useful intuition:
you can only cut
something in half
O(log n) times
before you run out
of elements.

What choice of k makes
n/2k=17

Answer: k = logz n.

O(n)
O(n)
O(n)
O(n)
O(n)



There are O(log n) levels in the recursion.
Each level does O(n) work.

Total work done: O(n log n).

O(n)
O(n)
O(n)
O(n)
O(n)



Can we do Better?

 Mergesort runs in time O(n log n), which is faster than
insertion sort’s O(n?).

e Can we do better than this?

* A comparison sort is a sorting algorithm that only
learns the relative ordering of its elements by making
comparisons between elements.

« All of the sorting algorithms we’ve seen so far are
comparison sorts.

« Theorem: There are no comparison sorts whose
average-case runtime can be better than O(n log n).

 If we stick with making comparisons, we can only hope
to improve on mergesort by a constant factor!



A Quick Historical Aside

« Mergesort was one of the first algorithms
developed for computers as we know
them today.

* It was invented by John von Neumann in
1945 (!) as a way of validating the design
of the first “modern” (stored-program)
computer.

« Want to learn more about what he did?
Check out this article by Stanford’s very
own Donald Knuth.



https://fermatslibrary.com/s/von-neumanns-first-computer-program

Time-Out for Announcements!



Midterm Review Session

« The amazing SL team will be holding a
midterm review session this weekend:

Saturday, February 11"
3:30 - 6:00PM
Hewlett 200

 There’s an online poll where you can
vote on what you’d like the team to
cover.



https://edstem.org/us/courses/32194/discussion/2540327

lecture.notify all();

(A C++ command to wake up parts of the program that
are sleeping and waiting for a signal to continue.)



Improving Mergesort



An Interesting Observation

* Big-O notation talks about long-term growth, but
says nothing about small inputs.

 For small inputs, insertion sort can be faster than

mergesort.

A

Insertion
sort faster

Insertion
Sort

A;S()rt

Runtime

~ _

Mergesort
faster

Input Size



Hybrid Mergesort

void hybridMergesort(Vector<int>& v) {
if (v.size() <= kCutoffSize) {
insertionSort(v);
} else {
int half = v.size()
Vector<int> left =

/ 2
V. subLlst(O half);
Vector<int> right = v.

subList(half);

hybridMergesort(left);
hybridMergesort(right);

merge(left, right, v);



Hybrid Mergesort

if (v.size() <= kCutoffSize) {
insertionSort(v);
}

Use insertion sort for small
inputs where insertion sort is
faster than mergesort.

Question to ponder: How
would you determine the value of
kCutoffSize to use?




Hybrid Mergesort

void hybridMergesort(Vector<int>& v) {
if (v.size() <= kCutoffSize) {
insertionSort(v);
} else {
int half = v.size()
Vector<int> left =

/ 2
V. subLlst(O half);
Vector<int> right = v.

subList(half);

hybridMergesort(left);
hybridMergesort(right);

merge(left, right, v);



Why Sort?



Suppose we want to search an array for an
element, and we know that array is sorted.

We could scan tfrom left to right to find that
element, but that takes time O(n).

Can we take advantage of the fact that the
list is sorted?



Each cup Numbers are
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number.
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Each cup Numbers are
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Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.
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these numbers
equal to 1067
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Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.



This algorithm is called binary search.



bool binarySearchRec(const Vector<int>& elems, int key,
int low, int high) {
/* Base case: If we're out of elements, horror of horrors!
* Our element does not exist.
* Question to ponder:

if (low == high) return false; how does this code

/* Probe the middle element. */ Corr?sl%ond to tlll'e .
int mid = low + (high - low) / 2; example from earlier

/* We might find what we're looking for! */
if (key == elems[mid]) return true;

/* Otherwise, discard half the elements and search
* the appropriate section.
*/
if (key < elems[mid]) {
return binarySearchRec(elems, key, low, mid);

} else {
return binarySearchRec(elems, key, mid + 1, high);
}

}

bool binarySearch(const Vector<int>& elems, int key) {
return binarySearchRec(elems, key, 0, elems.size());
}



Binary Search

 How fast is binary search?

« Each round does a constant amount of work
(checking how the key relates to the middle).

 Each round tosses away half the elements.

 We can only toss away half the elements
O(log n) times before no elements are left.

 Worst-case runtime: O(log n).

* Question to ponder: what’s the best-case
runtime?

» This is exponentially faster than scanning
from the left to the right!



Why All This Matters

* Big-O notation gives us a quantitive way
to predict runtimes.

* Those predictions provide a quantitive
intuition for how to improve our
algorithms.

 Understanding the nuances of big-O
notation then leads us to design algorithms
that are better than the sum of their parts.

 We can use binary search to look inside
sorted sequences really, really quickly.



Your Action Items

* Read Chapter 10 of the textbook.
» It’s all about big-O and sorting.

» Finish Assignment 4.
 We’re here for you if you need help!

* Study for the Midterm

« Review old assignments, do practice exams,
etc.



Next Time

 Designing Abstractions

« How do you build new container classes?
* Class Design

 What do classes look like in C++7?
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