Searching and Sorting

Part 'Two

Recap from Last Time

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

= |
1 2

4 7 O

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

.l
1 2 4

7 O

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

.l
1 2 4 o

7/

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

.|I||
1 2 4 o6 7

Our Next Idea: Insertion Sort

Our Next Idea: Insertion Sort

Our Next Idea: Insertion Sort

Our Next Idea: Insertion Sort

Our Next Idea: Insertion Sort

Our Next Idea: Insertion Sort

Our Next Idea: Insertion Sort

4 7

2 1 0

Our Next Idea: Insertion Sort

4 7

2 1 0

Our Next Idea: Insertion Sort

4 7 2 1 o0

» 4

Our Next Idea: Insertion Sort

Our Next Idea: Insertion Sort

Our Next Idea: Insertion Sort

4 7

2 1 o

Our Next Idea: Insertion Sort

|I|
2 4 7

1 o

Our Next Idea: Insertion Sort

|I|
2 4 7

1 o

Our Next Idea: Insertion Sort

|I|
2 4 7 1 o

» 4

Our Next Idea: Insertion Sort

1
2 4

1 7 o

Our Next Idea: Insertion Sort

1
2 4 1 7 ©

» 4

Our Next Idea: Insertion Sort

4 7

1 0

Our Next Idea: Insertion Sort

4 7

0

Our Next Idea: Insertion Sort

1
2 4 7

0

Our Next Idea: Insertion Sort

.l
1 2 4 7

0

Our Next Idea: Insertion Sort

.l
1 2 4 7

0

Our Next Idea: Insertion Sort

.l
1 2 4 7 6

» 4

Our Next Idea: Insertion Sort

.l
1 2 4

o 7

Our Next Idea: Insertion Sort

1 I
2 4 o0 7

Selection sort and insertion sort each
run in time O(n?) in the worst case.

Doubling the size of the
input quadruples the runtime.

Halving the size of the
input quarters the runtime.

Thinking About O(n?)

14 3 9 7 16 15 5 10 11 13 12
S~) -
-

T(n)
14 9 7 16 15 10 11 13 12
- -
T(%n) T(%2n)

Thinking About O(n?)

14 3 9 7 16 15 5 10 11 13 12
S~) -
S
T(n)

14 9 7 16 15 10 11 13 12
— —
Y4 T(n) Y4T(n)

Thinking About O(n?)

2 - YaT(n) = 2T(n)

14 3 16 2 15 5 10 11 1 13 12 4
S~) -
S
T(n)

2 7 9 14 15 16 4 8 10 11 12 13
— —

Y4T(n) Y4 T(n)

The Key Insight: Merge

N

The Key Insight: Merge

The Key Insight: Merge

1 4 6 8 9

The Key Insight: Merge

1 4 6 8 O
i

The Key Insight: Merge

7 1(4 6 8 9
1

The Key Insight: Merge

7 1(4 6 8 9
1

The Key Insight: Merge

7 1(4 6 8 9
1

The Key Insight: Merge

7 1(6 8 O
1

The Key Insight: Merge

7 1(6 8 O
1

The Key Insight: Merge

The Key Insight: Merge

The Key Insight: Merge

10
||I
1 2 3 4 5 6 7 8

> ©

The Key Insight: Merge

The Key Insight: Merge

The Key Insight: Merge

Each step makes a single

comparison and reduces

the number of elements
by one.

If there are n total
elements, this algorithm
runs in time O(n).

“Split Sort”

14

16

15

10

11

13

12

14

16

15

10

11

13

12

1. Split the input in half.

“Split Sort”

14

16

15

10

11

13

12

14

16

15

10

11

13

12

1. Split the input in half.

2. Insertion sort each half.

“Split Sort”

10

11

12

13

14

15

16

15

16

10

11

12

13

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

New Stuff!

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12
S~) -
—

T(n)

14 6 3 9 7 16 2 15 5 160 8 11 1 13 12

- /o / AN
e e e e
T(1/4n) T(1/4n) T(1/4n) T(1/4n)

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12
- - o
T(n)

14 9 7 16 2 15 5 18 8 11 1 13 12 4
N 2N ~ / ~ AN ~ /
1/16 T(N) /16 T(N) /16 T(N) /16 T(N)
4 -6 T(n) = VaT(n)

“Double Split Sort”

14

15

10

11

13 12

14

9 7 16

N

15

10

11

13

12

1. Split the input into quarters.

“Double Split Sort”

14

16

15

10

11

13

12

14

15

16

10

11

12

13

1. Split the input into quarters.

2. Insertion sort each quarter.

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11

13

12

2 3 6 7 9 14 15 16 1

=N
v
o

10

11

12

13

/" ™\ /

AN

3 6 9 14 2 7 1516 5 8 10 11

12

13

1. Split the input into quarters.

2. Insertion sort each quarter.

3. Merge two pairs of quarters into halves.

“Double Split Sort”

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

/ N

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

3 6 9 14 2 7 1516 5 8 10 11 1 4 12 13

1. Split the input into quarters. — :
Prediction: This

2. Insertion sort each quarter. should be four

3. Merge two pairs of quarters into halves. times as fast as
insertion sort.

4. Merge the two halves back together.

Splitting to the Extreme

* Splitting our array in half, sorting each
halt, and merging the halves was twice
as fast as insertion sort.

* Splitting our array in quarters, sorting
each quarter, and merging the quarters
was four times as fast as insertion sort.

* Question: What happens if we never
stop splitting?

14 /716 2 15 5 10 8 11 1 13 12 4
14 6 16 2 15 510 8 11 1 13 12 4
14 6 3 /7 16 2 15 510 8 11 1 13 12
14 6 3 16 2 15 510 8 11 1 13 12 4
14 6 3 16 2 15 5 /10 8 /11 |1 13 12 4

14 7 16 2 15 5 10 8 11 1 13 12 4
14 6 16| 2 |15 510 8 11 1 1312 4
14 6 3 7016/ 215 |s5]10|/8]12] |1]13|12
14 6 3 16| | 2/15| 5|108] 8|11] 1]13| [12|4
14 6 3 16 |2 |15/ 5 (10| 8 |11] 1| 13 |12| 4

4

12

1 1312 4

13

1

11

8

510 8 11 1 13 12 4

510 8 11

10

5

15

2

/7 16 2 15

16

7

146 3 9 7 16 2 15 5 10 8 11 1 13 12 4

3

146 3 9 7 16 2 15

146 3 9

6

14

ANA AN ANAN ANV AN A

M639716215510811113124

12

4

1 1312 4

13

1

11

8

510 8 11 1 13 12 4

510 8 11

10

5

15

2

/7 16 2 15

16

/

146 3 9 7 16 2 15 5 10 8 11 1 13 12 4

3

146 3 9 7 16 2 15

146 3 9

14

6

ANA AN ANAN ANV AN A

M639716215510811113124

12

4

1 1312 4

13

1

11

8

510 8 11 1 13 12 4

510 8 11

10

5

15

2

/7 16 2 15

16

/

146 3 9 7 16 2 15 5 10 8 11 1 13 12 4

3

146 3 9 7 16 2 15

146 3 9

14

6

ANA AN ANAN ANV AN A

M639716215510811113124

12

4

1 4 12 13

13

1

11

8

510 8 11 1 13 12 4

5 8 10 11

10

5

15

2

2 7 15 16

16

/

146 3 9 7 16 2 15 5 10 8 11 1 13 12 4

3

146 3 9 7 16 2 15

3 6 9 14

14

6

ANA AN ANAN ANV AN A

M639716215510811113124

12

4

1 4 12 13

13

1

11

8

510 8 11 1 13 12 4

5 8 10 11

10

5

15

2

2 7 15 16

16

/

146 3 9 7 16 2 15 5 10 8 11 1 13 12 4

3

146 3 9 7 16 2 15

3 6 9 14

14

6

ANA AN ANAN ANV AN A

M639716215510811113124

12

4

1 4 12 13

13

1

11

8

1 4 5 8 1011 12 13

5 8 10 11

10

5

15

2

2 7 15 16

16

/

146 3 9 7 16 2 15 5 10 8 11 1 13 12 4

3

2 3 6 7 9 14 15 16

3 6 9 14

14

6

ANA AN ANAN ANV AN A

M639716215510811113124

12

4

1 4 12 13

13

1

11

8

1 4 5 8 1011 12 13

5 8 10 11

10

5

15

2

2 7 15 16

16

/

146 3 9 7 16 2 15 5 10 8 11 1 13 12 4

3

2 3 6 7 9 14 15 16

3 6 9 14

14

6

ANA AN ANAN ANV AN A

M639716215510811113124

12

4

1 4 12 13

13

1

11

8

1 4 5 8 1011 12 13

5 8 10 11

10

5

15

2

2 7 15 16

16

/

1 2 3 4 5 6 7 8 9 101112 13 14 15 16

3

2 3 6 7 9 14 15 16

3 6 9 14

14

6

ANA AN ANAN ANV AN A

M639716215510811113124

3.6 9 14

%14

14 6

Mergesort, Intuitively

14 6 3 9 7 15 2 5 10 8 11 1 1312 4

— ~ Split array into
I ‘; roughly equal
pu -~ halves

146 3 9 7 15 2 5 10 8 11 1 1312 4

2O

2 356 7 91415 1 4 8 101112 13

Merge sorted
subarrays

12 3 4 5 6 7 8 9101112 13 1415

Recursively
mergesort

each half

Mergsort

* A recursive sorting algorithm!
 Base Case:

 An empty or single-element list is already
sorted.

* Recursive step:

 Break the list in half and recursively sort
each part.

* Use merge to combine them back into a single
sorted list.

void mergesort(Vector<int>& v) {
/* Base case: 0- or 1l-element lists are
* already sorted.
*/
if (v.size() <= 1) {
return;
}

/* Split v into two subvectors. */

int half = v.size() / 2;

Vector<int> left = v.subList(0, half);
Vector<int> right = v.subList(half);

/* Recursively sort these arrays. */
mergesort(left);
mergesort(right);

/* Combine them together. */
merge(left, right, v);

How fast is mergesort?

First, the numbers.

Now, the theory!

This next section is the mathiest math
we’re going to math all quarter.

It’s great if you can follow along with it.

You aren’t expected to come up with
this on your own.

If you like this analysis, take CS161!

void mergesort(Vector<int>& v) {
/* Base case: 0- or 1l-element lists are
* already sorted.
*/
if (v.size() <= 1) {
return;
}

/* Split v into two subvectors. */

int half = v.size() / 2;

Vector<int> left = v.subList(0, half);
Vector<int> right = v.subList(half);

/* Recursively sort these arrays. */
mergesort(left);
mergesort(right);

/* Combine them together. */
merge(left, right, v);

void mergesort(Vector<int>& v) {
/* Base case: 0- or 1l-element lists are
* already sorted.

*/
if (v.size() <= 1) {
return;
}
/* Split v into two subvectors. */
int half = v.size() / 2; O(n)
Vector<int> left = v.subList(0, half); work

Vector<int> right = v.subList(half);

/* Recursively sort these arrays. */
mergesort(left);
mergesort(right);

/* Combine them together. */ 0O(n)
merge(left, right, v);

void mergesort(Vector<int>§ Why does forming these sublists

/* Base case: 0- or 1-el take time O(n)?
* already sorted. '
*/ . Answer at
if (v.size() <= 1) { https://pollev.com/cs106bwin23
return;
}
/* Split v into two subvectors. */
int half = v.size() / 2; O(n)
Vector<int> left = v.subList(0, half); work

Vector<int> right = v.subList(half);

/* Recursively sort these arrays. */
mergesort(left);
mergesort(right);

/* Combine them together. */ o(n)
merge(left, right, v); work

https://pollev.com/cs106bwin23

void mergesort(Vector<int>& v) {
/* Base case: 0- or 1l-element lists are
* already sorted.

*/
if (v.size() <= 1) {
return;
}
/* Split v into two subvectors. */
int half = v.size() / 2; O(n)
Vector<int> left = v.subList(0, half); work

Vector<int> right = v.subList(half);

/* Recursively sort these arrays. */
mergesort(left);
mergesort(right);

/* Combine them together. */ 0O(n)
merge(left, right, v);

voild mergesort(Vector<int>& v) {
/* Base case: 0- or 1l-element lists are
* already sorted.
*/
if (v.size() <= 1) {
return;
}

/* Split v into two subvectors. */

int half = v.size() / 2;

Vector<int> left = v.subList(0, half);
Vector<int> right = v.subList(half);

/* Recursively sort these arrays. */
mergesort(left);
mergesort(right);

/* Combine them together. */
merge(left, right, v);

How much work does
mergesort do at each level of
recursion?

O(n)
O(n)
O(n)
O(n)
O(n)

How many levels are there?

O(n)
O(n)
O(n)
O(n)
O(n)

Each recursive call cuts the
array size in hallf.

O(n)
O(n)
O(n)
O(n)
O(n)

n/ 2
elements

n/ 1

elements

n/ s
elements

After k layers of the recursion,
if the original array has size n,
each subarray has size n / 2%,

O(n)
O(n)
O(n)
O(n)
O(n)

The recursion stops when
we’'re down to a single
element.

O(n)
O(n)
O(n)
O(n)
O(n)

Useful intuition:
you can only cut
something in half
O(log n) times
before you run out
of elements.

What choice of k makes
n/2k=17

Answer: k = logz n.

O(n)
O(n)
O(n)
O(n)
O(n)

There are O(log n) levels in the recursion.
Each level does O(n) work.

Total work done: O(n log n).

O(n)
O(n)
O(n)
O(n)
O(n)

Can we do Better?

 Mergesort runs in time O(n log n), which is faster than
insertion sort’s O(n?).

e Can we do better than this?

* A comparison sort is a sorting algorithm that only
learns the relative ordering of its elements by making
comparisons between elements.

« All of the sorting algorithms we’ve seen so far are
comparison sorts.

« Theorem: There are no comparison sorts whose
average-case runtime can be better than O(n log n).

 If we stick with making comparisons, we can only hope
to improve on mergesort by a constant factor!

A Quick Historical Aside

« Mergesort was one of the first algorithms
developed for computers as we know
them today.

* It was invented by John von Neumann in
1945 (!) as a way of validating the design
of the first “modern” (stored-program)
computer.

« Want to learn more about what he did?
Check out this article by Stanford’s very
own Donald Knuth.

https://fermatslibrary.com/s/von-neumanns-first-computer-program

Time-Out for Announcements!

Midterm Review Session

« The amazing SL team will be holding a
midterm review session this weekend:

Saturday, February 11"
3:30 - 6:00PM
Hewlett 200

 There’s an online poll where you can
vote on what you’d like the team to
cover.

https://edstem.org/us/courses/32194/discussion/2540327

lecture.notify all();

(A C++ command to wake up parts of the program that
are sleeping and waiting for a signal to continue.)

Improving Mergesort

An Interesting Observation

* Big-O notation talks about long-term growth, but
says nothing about small inputs.

 For small inputs, insertion sort can be faster than

mergesort.

A

Insertion
sort faster

Insertion
Sort

A;S()rt

Runtime

~ _

Mergesort
faster

Input Size

Hybrid Mergesort

void hybridMergesort(Vector<int>& v) {
if (v.size() <= kCutoffSize) {
insertionSort(v);
} else {
int half = v.size()
Vector<int> left =

/ 2
V. subLlst(O half);
Vector<int> right = v.

subList(half);

hybridMergesort(left);
hybridMergesort(right);

merge(left, right, v);

Hybrid Mergesort

if (v.size() <= kCutoffSize) {
insertionSort(v);
}

Use insertion sort for small
inputs where insertion sort is
faster than mergesort.

Question to ponder: How
would you determine the value of
kCutoffSize to use?

Hybrid Mergesort

void hybridMergesort(Vector<int>& v) {
if (v.size() <= kCutoffSize) {
insertionSort(v);
} else {
int half = v.size()
Vector<int> left =

/ 2
V. subLlst(O half);
Vector<int> right = v.

subList(half);

hybridMergesort(left);
hybridMergesort(right);

merge(left, right, v);

Why Sort?

Suppose we want to search an array for an
element, and we know that array is sorted.

We could scan tfrom left to right to find that
element, but that takes time O(n).

Can we take advantage of the fact that the
list is sorted?

Each cup Numbers are
contains a sorted from left
number.

to right

LS AR I A A A

Are any of
these numbers
equal to 1067

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

Each cup Numbers are
contains a sorted from left
number.

to right

Or here?

Can 106
be here?

Or here?

Are any of
these numbers
equal to 1067

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

Each cup
contains a
number.

Numbers are
sorted from left
to right

Can 106
be here?

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

Are any of
these numbers
equal to 1067

Each cup Numbers are
contains a sorted from left
number.

to right

Are any of
these numbers
equal to 1067

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

Each cup Numbers are
contains a sorted from left
number.

to right

Alas, 106 is not to be found here.

Are any of
these numbers
equal to 1067

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

Each cup Numbers are
contains a sorted from left
number.

to right

LS AR I A A A

Are any of
these numbers
equal to 1067

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

Each cup Numbers are
contains a sorted from left
number.

to right

-_
a

Or here? Can 106
[be here?

Are any of
these numbers
equal to 1067

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

Each cup
contains a
number.

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

Numbers are
sorted from left
to right

Can 106
be here?

Are any of
these numbers
equal to 1067

l

A
Each cup v . Numbers are
contains a sorted from left

number. to right

Are any of
these numbers
equal to 1067

v
Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

This algorithm is called binary search.

bool binarySearchRec(const Vector<int>& elems, int key,
int low, int high) {
/* Base case: If we're out of elements, horror of horrors!
* Our element does not exist.
* Question to ponder:

if (low == high) return false; how does this code

/* Probe the middle element. */ Corr?sl%ond to tlll'e .
int mid = low + (high - low) / 2; example from earlier

/* We might find what we're looking for! */
if (key == elems[mid]) return true;

/* Otherwise, discard half the elements and search
* the appropriate section.
*/
if (key < elems[mid]) {
return binarySearchRec(elems, key, low, mid);

} else {
return binarySearchRec(elems, key, mid + 1, high);
}

}

bool binarySearch(const Vector<int>& elems, int key) {
return binarySearchRec(elems, key, 0, elems.size());
}

Binary Search

 How fast is binary search?

« Each round does a constant amount of work
(checking how the key relates to the middle).

 Each round tosses away half the elements.

 We can only toss away half the elements
O(log n) times before no elements are left.

 Worst-case runtime: O(log n).

* Question to ponder: what’s the best-case
runtime?

» This is exponentially faster than scanning
from the left to the right!

Why All This Matters

* Big-O notation gives us a quantitive way
to predict runtimes.

* Those predictions provide a quantitive
intuition for how to improve our
algorithms.

 Understanding the nuances of big-O
notation then leads us to design algorithms
that are better than the sum of their parts.

 We can use binary search to look inside
sorted sequences really, really quickly.

Your Action Items

* Read Chapter 10 of the textbook.
» It’s all about big-O and sorting.

» Finish Assignment 4.
 We’re here for you if you need help!

* Study for the Midterm

« Review old assignments, do practice exams,
etc.

Next Time

 Designing Abstractions

« How do you build new container classes?
* Class Design

 What do classes look like in C++7?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142

